USN

Third Semester B.E. Degree Examination, June/July 2014 Engineering Mathematics - III

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Find Fourier series of $f(x)=2 \pi x-x^{2}$ in $[0,2 \pi]$. Hence deduce $\sum_{1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$. Sketch the graph of $f(x)$.
(07 Marks)
b. Find Fourier cosine series of $f(x)=\sin \left(\frac{m \pi}{\ell}\right) x$, where m is positive integer.
(06 Marks)
c. Following table gives current (A) over period (T):

$\mathrm{A}(\mathrm{amp})$	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98
t (sec)	0	$\mathrm{~T} / 6$	$\mathrm{~T} / 3$	$\mathrm{~T} / 2$	$2 \mathrm{~T} / 3$	$5 \mathrm{~T} / 6$	T

Find amplitude of first harmonic.
(07 Marks)
2 a. Find Fourier transformation of $\mathrm{e}^{-\mathrm{a}^{2} \mathrm{x}^{2}}(-\infty<\mathrm{x}<\infty)$ hence show that $\mathrm{e}^{-\mathrm{x} / 2}$ is self reciprocal.
b. Find Fourier cosine and sine transformation of

$$
f(x)=\left\{\begin{array}{cc}
x & 0<x<a \\
0 & x \geq a
\end{array}\right.
$$

(07 Marks)
$f(x)=\left\{\begin{array}{cc}x & 0<x<a \\ 0 & x \geq a\end{array}\right.$
(06 Marks)
c. Solve integral equation $\int_{0}^{\pi x} f(x) \cos s x d x=\left\{\begin{array}{cc}1-s & 0<s<1 \\ 0 & s \geq 1\end{array}\right.$. Hence deduce $\int_{0}^{\pi} \frac{1-\cos x}{x^{2}} d x=\frac{\pi}{2}$.
(07 Marks)
3 a. Find various possible solution of one dimensional wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ by separable variable method.
(07 Marks)
b. Obtain solution of heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial t^{2}}$ subject to condition $u(0, t)-0, u(\ell, t)-0$, $u(x, 0)=f(x)$.
(06 Marks)
c. Solve Laplace cquation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ subject to condition $u(0, y)=u(\ell, y)=u(x, 0)=0$; $u(x, a)-\sin \left(\frac{\pi x}{\ell}\right)$.
(07 Marks)
4 a. The revolution (r) and time (t) are related by quadratic polynomial $r=a t^{2}+b t+c$. Estimate number revolution for time 3.5 units, given

Revolution	5	10	15	20	25	30	35
Time	1.2	1.6	1.9	2.1	2.4	2.6	3

(07 Marks)
b. Solve by graphical mcthod,

Minimizc $Z=20 x_{1}+10 x_{2}$ under the constraints $2 x_{1}+x_{2} \geq 0 ; x_{1}+2 x_{2} \leq 40 ; 3 x_{1}+x_{2} \geq 0$; $4 x_{1}+3 x_{2} \geq 60 ; \quad x_{1}, x_{2} \geq 0$.
(06 Marks)
c. A company produces 3 items A, B, C. Each unit of A requires 8 minutes, 4 minutes and 2 minutes of producing time on machine M_{1}, M_{2} and M_{3} respectively. Similarly B requires 2 , 3,0 and C requires $3,0,1$ minutes of machine M_{1}, M_{2} and M_{3}. Profit per unit of A, B and C are Rs.20, Rs. 6 and Rs. 8 respectively. For maximum profit, how many number of products A, B and C are to be produced? Find maximum profit. Given machine M_{1}, M_{2}, M_{3} are available for 250,100 and 60 minutes per day.
(07 Marks)
PART - B
5 a. By relaxation method, solve $-x+6 y+27 z=85,54 x+y+7=110,2 x+15 y+6 z=72$.
(07 Marks)
b. Using Newton Raphson method derive the iteration formula to find the value of reciprocal of positive number. Hence use to find $\frac{1}{\mathrm{e}}$ upto 4 decimals.
(06 Marks)
c. Using power rayley method find numerical largest eigen value and corresponding eigen vector for $\left[\begin{array}{ccc}10 & 2 & 1 \\ 2 & 10 & 1 \\ 2 & 1 & 10\end{array}\right]$ using $(1,1,0)^{\mathrm{T}}$ as initial vector. Carry out 10 iterations.
(07 Marks)

6 a. Fit interpolating polynomial for $f(x)$ using divided difference formula and hence evaluate $f(z)$, given $f(0)=-5, f(1)--14, f(4)=-125, f(8)=-21, f(10)=355$.
(07 Marks)
b. Fstimate t when $\mathrm{f}(\mathrm{t})=85$, using inverse interpolation formula given :
(06 Marks)

t	2	5	8	14
$\mathrm{f}(\mathrm{t})$	94.8	87.9	81.3	68.7

c. A solid of revolution is formed by rotating about x-axis, the area between x-axis, lines $x-0, x-1$ and curve through the points with the following co-ordinates.

x	0	$1 / 6$	$2 / 6$	$3 / 6$	$4 / 6$	$5 / 6$	1
y	0.1	0.8982	0.9018	0.9589	0.9432	0.9001	0.8415

by Simpson's $3 / 8^{\text {th }}$ rule, find volume of solid formed.
(07 Marks)
7 a. Using the Schmidt two-level point formula solve $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$ under the conditions $u(0, t)-u(1, t)=0 ; \quad t \geq 0 ; u(1,0)=\sin \pi x \quad 0<x<1$, take $h=\frac{1}{4} \alpha=\frac{1}{6}$. Carry out 3 steps in time level.
(07 Marks)
b. Solve the wave equation $\frac{\partial^{2} u}{\partial^{2}}=4 \frac{\hat{\imath}^{2} u}{\partial x^{2}}$ subject to $u(0, t)-u(4, t)=u_{1}(x, 0)=0, u(x, 0)-x(4-x)$ take $\mathrm{h}=1 \mathrm{k} \cdots 0.5$.
(06 Marks)
c. Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ in the square mesh. Carry out 2 iterations.
(07 Marks)

8 a. State and prove recurrence relation of f-transformation hence find $Z_{T}(n), Z_{1}\left(n^{2}\right)$.
(07 Marks)
b. Find $Z_{T}\left[c^{n 6} \cosh n 0-\sin (n A+\theta)+n\right]$.
(06 Marks)
c. Solve difference equation $u_{n+2}+6 u_{n+1}+9 u_{n}=n 2^{n}$ given $u_{0}=u_{1}=0$.

Third Semester B.E. Degree Examination, June/July 2014 Electronic Circuits

Time: 3 hrs .
Max. Marks: 100
Note: 1. Answer any FIVE full questions, selecting
atleast TWO questions from each part.
2. Any missing data may be assumed suitably.

PART - A

Fig.Q.1(b)
c. Explain the construction and operating principle of uni junction transistor (UJT) with relevant sketches.
(08 Marks)
2 a. Explain the construction, working and characteristics of N -channel E-MOSFET with neat sketches.
(10 Marks)
b. Give a comparision between JFETs and MOSFETs (any four).
(04 Marks)
c. Briefly discuss the basic operation of CMOS inverter with a neat diagram. Mention any two advantages.
(06 Marks)
3 a. With a neat diagram, explain the working of a photo conductor. Show how resistance varies with illuminance. Draw any two application circuits.
(10 Marks)
b. What is an optocoupler? Explain the parameters of optocoupler.
(06 Marks)
c. A photodiode has a noise current of $1 \times 10^{-15} \mathrm{~A}$. responsivity of $0.5 \mathrm{~A} / \mathrm{W}$. active area of $1 \mathrm{~mm}^{2}$ and rise time of 3.5 ns . Determine its i) NEP; ii) Detectivity; iii) D*; iv) Quantum efficiency at 850 nm .
(04 Marks)
4 a. Obtain the expression for current gain, input impedance, voltage gain and output admittance of a transistor amplifier using complete h-parameter model.
(12 Marks)
b. Fig.Q.4(b) shows a Darlington amplifier. The two transistors Q_{1} and Q_{2} are identical and the h-parameters for both the transistors are $\mathrm{h}_{\mathrm{ie}}=1 \mathrm{~K} \Omega, \mathrm{~h}_{\mathrm{fc}}=100$ and $\mathrm{h}_{\mathrm{oc}}=40 \times 10^{-6} \mathrm{mhos}$. The valucs of voltages $\mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{BF}: 1}=0.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}: 2}=0.7 \mathrm{~V}$. Determine the following: i) Input impedance; ii) Output impedance; iii) Voltage gain; iv) Current gain. (08 Marks)

Fig.Q.4(b)

PART - B

5 a. Derive the expression for voltage gain. input resistance and output resistance in a voltage series feedback topology.
(10 Marks)
b. List the advantages and disadvantages of negative feedback.

c. Derive an expression for gain of an amplifier with feedback in terms of gain without

 feedback.(04 Marks)
6 a. Explain the operation of monostable multivibrator with a neat diagram.
(08 Marks)
b. Explain RC low pass circuit and discuss the behaviour of this circuit towards step and pulse inputs.
(08 Marks)
c. Write a note on Barkhausen criterion.
(04 Marks)
7 a. Explain the operation of buck regulator with a neat diagram.
(10 Marks)
b. Design a power transformer with a multi-output secondary and the following input/output specifications:
I. Primary voltage: 220 V .50 Hz .
II. Secondary voltage: i) $12-0-12 \mathrm{~V}$ at 100 mA and ii) 5 V at IA .

Assume $\mathrm{B}=60,000$ lines per square inch and an efficiency of 90%.
(06 Marks)
c. Define load regulation and line regulation of regulated power supply.
(04 Marks)
8 a. List and explain the performance parameters of operational amplifiers.
(08 Marks)
b. Explain the working of comparator as zero crossing detectors.
(06 Marks)
c. For the relaxation oscillator circuit shown in Fig.Q.8(c), determine the heat to heat amplitude and frequency of the square wave output given that saturation output voltage of the opamp is $\pm 12.5 \mathrm{~V}$ at power supply voltages of $\pm 15 \mathrm{~V}$.
(06 Marks)

Fig.Q.8(e)

Third Semester B.E. Degree Examination, June/July 2014
 Logic Design

Time: 3 hrs.
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART -- A

1 a. Define rise time, fall time in a digital waveform. What is the value of high duty cycle (duty cycle H) if the frequency of a digital waveform is 5 MHz and the width of the positive pulse is $0.05 \mu \mathrm{~s}$?
(04 Marks)
b. Realize the basic gates using only NAND gates.
(06 Marks)
c. What is positive and negative logic? List the cquivalences in positive and negative logic.
(04 Marks)
d. Write a verilog HDL code using structural model for two input AND gate and prepare testbench to simulate the circuit. Draw the timing diagram generated by simulating the verilog code. Assume 20 ns holding time of each input combination.
(06 Marks)
2 a. Simplify the Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,3,5,7,8,10,12.14)$ by using Karnaugh map method and realize the logic circuit using only NAND gates. (06 Marks)
b. Draw Karnaugh map of $Y=F(A, B, C, D)=\Pi M(0,1,2,4,5,10) \cdot d(8,9,11,12,13,15)$ and get the simplified POS form of K-map.
(04 Marks)
c. Get simplified expression of $Y=F(A, B, C, D)=\sum m(2,3,7,9,11,13)+d(1,10,15)$ using Quine-McClusky method.
(10 Marks)
3 a. What is a multiplexer? Design a 4-to-1 multiplexer using logic gates, write the truth table and explain its working principle.
(06 Marks)
b. Describe the working principle of $3: 8$ decoder. Design a circuit that realizes the following functions using a $3: 8$ decoder and multi-input OR gates.
$\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(1,3,7) ; \quad \mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(2,3,5)$
(06 Marks)
c. What is magnitude comparator? Design one bit comparator and write the truth table, logic circuit using basic gates.
(06 Marks)
d. How does Programmable Logic Arrays (PLA) differ from a Programmable Array Logic (PAL)?
(02 Marks
4 a: With the help of ncat diagram, explain the working of edge triggered JK flip-flop. Write the state diagram and excitation table.
(06 Marks)
b. What is switch contact bounce? Explain the working principle of a simple RS latch debounce circuit.
(04 Marks)
c. Write the state table and state diagram for the circuit shown in Fig.Q4(c).

Fig.Q4(c)
(10 Marks)

PART - B

5 a. What is a shift register? Draw the logic diagram of a 4 bit serial in serial out (SISO) shift register using negative edge triggered JK or D flip-flops and explain its operation with the waveform to shift the binary number 1010 into the register.
(08 Marks)
b. Explain with logic diagram the use of 8-bit SISO shift register in serial addition of two 8-bit numbers.
(08 Marks)
c. Write verilog 11DL code for 4-bit SIPO shift register when all the flip-flop outputs are available externally.
(04 Marks)
6 a. What are asynchronous and synchronous counters? With a neat block diagram, output waveform and truth table, explain a 3-bit binary ripple counter constructed using negative edge triggered JK flip-flops.
(10 Marks)
b. Design a mod-5 counter using JK flip-flops having the feature that if an unused state appears, the counter will reset to 000 at the next clock pulse.
(10 Marks)
7 a. With neat block diagrams compare Mealy model and Moore model of sequential logic system.
b. Draw the ASM chart for the Mealy machine shown in Fig.Q7(b).

Fig.Q7(b)
c. Using row elimination method reduce the state diagram shown in Fig.Q7(c).

Fig.Q7(c).
8 a. What is the binary ladder? Explain the binary ladder with a digital input of 1000 .
b. Define Accuracy and Resolution with respect to DAC.
c. With a neat circuit diagram, explain parallel ADC .

Third Semester B.E. Degree Examination, June/July 2014 Discrete Mathematical Structures

Time: 3 hrs .

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. For any three sets $A . B, C$, prove: $\Lambda \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(06 Marks)
b. Among the integers from 1 to 200 , find the number of integers that are:
i) not divisible by 5
ii) divisible by 2 or 5 or 9
iii) not divisible by 2 or 5 or 9 .
(07 Marks)
(07 Marks)
c. Prove that every even integer n with $2 \leq n \leq 26$ can be written as a sum of atmost three perfect squares.
(07 Marks)

4 a. Let $a_{0}=1, a_{1}=2, a_{2}=3$ and $a_{n}=a_{n-1}+a_{n} \quad+a_{n-3}$ for $n \geq 3$. Prove that $a_{n} \leq 3^{n}$ for all positive integers n.
(06 Marks)
b. Find an explicit definition of the sequence delined recursively by $\mathrm{a}_{1}=7, \mathrm{a}_{11}=2 \mathrm{a}_{11} \quad 1+1$ for $\mathrm{n} \geq 2$.
(07 Marks)
c. The Lucas numbers are defined recursively by $L_{0}=2, ~ L_{1}=1$ and $L_{n}=L_{n-1}+L_{n}$ for $n \geq 2$. Evaluate L_{2} to L_{10}.
(07 Marks)

PART - 13

5 a. Suppose $A . B, C \subseteq 7, X 7$, with $A-\{(x, y) y-5 x-1\}: B=\{(x, y) y=6 x\}$; $C=\{(x, y) \mid 3 x \cdots y=-7\}$. Find: (i) $A \cap B$. (ii) $B \cap C$. (iii) $\overline{\bar{A} \cup \bar{C}}$. (iv) $\bar{B} \cup \bar{C}$.
(06 Marks)
b. Define stirling number of second kind. Find the number of ways of distributing four distinet objects among three identical containers with some containers possibly empty.
(07 Marks)
c. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B} . \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$. and $\mathrm{h}: \mathrm{C} \rightarrow \mathrm{I})$ are three functions then prove that $(\mathrm{h} \circ \mathrm{g}) \circ \mathrm{f}=\mathrm{h} \circ(\mathrm{g} \circ \mathrm{f})$.
(07 Marks)
6 a. Let $A=\{1,2,3,4\}, B-\{w . x . y .7\}$ and $C=\{5,6.7\}$. Also. let R_{1} be a relation from A to B, defined by $R_{1}=\{(1, x),(2, x),(3, y),(3, z)\}$ and R_{2} and R_{3} be relations from B to C. defined by $R_{2}=\{(w, 5),(x, 6)\}, R_{3}-\left\{(w, 5),(w, 6) ;\right.$. Find $R_{1} \circ R_{3}$.
(06 Marks)
b. Find the number of equivalence relations that can be defined on a finite set A with $|A|=6$.
(07 Marks)
c. For $\Lambda=\{a, b, c, d, e\}$. the llasse diagram for the poset (Λ, R) is as shown below:

Fig. O6(c)
i) Determine the relation matrix for R.
ii) Construct the diagraph for R.
(07 Marks)
7 a. Detine subgroup of a group. Let (i be a group and let $J=\{x \in(\dot{x} \mid x y=y x$ for all $y \in G\}$. Prove that J is a subgroup of G.
(06 Marks)
b. State and prove Lagrange's theorem.
(07 Marks)
c. The word $\mathrm{c}=1010110$ is sent through a binary symmetric channel. If $\mathrm{p}=0.02$ is the probability of incorrect receipt of a signal. find the probability that c is received as $r=1011111$. Determine the error pattern.
(07 Marks)

8 a. The parity-check matrix for an encoding function $1: x_{2}^{*} \rightarrow \ell_{2}^{6}$ is given by

$$
H=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

i) Determine the associated generator matrix.
ii) Does this code correct all single errors in transmission'?
(06 Marks)
b. Prove that the set \angle with binary operations \oplus and \odot detined by $x \oplus y=x+y-1$; $x \odot y-x+y-x y$ is a cumulative ring.
(07 Marks)
c. Show that z_{6} is not an integral domain.
(07 Marks)

Third Semester B.E. Degree Examination, June/July 2014 Data Structures with C

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. What is pointer? How pointers are declared and initialized in C?
(03 Marks)
b. What is dangling pointer reference and how to avoid it?
(04 Marks)
c. Estimate the space complexity of a recursive function for summing a list of numbers.
(05 Marks)
d. Define the term "space and time complexity". Apply program step counter method to estimate the time complexity of a function to add two matrices.
(08 Marks)
2 a. With a suitable example, explain dynamic memory allocation for 2-d arrays.
(04 Marks)
b. Define a strueture for the employee with the following fields :

Emp_Id(integer), Emp_Name(string), Emp_Basic(float), Emp_Dept(string) and Emp_Age(integer). Write the following functions to process the employee data:
i) Function to read an employee record
ii) Function to print an employee record.
(08 Marks)
c. Write the "fast transpose" algorithm of a sparse matrix. Why the name "fast transpose"?
(08 Marks)
3 a. What is the advantage of circular queue over linear queue? Write the inscrt and delete functions for circular implementation of queues.
(08 Marks)
b. Explain infix to postfix expression algorithm and trace it for an expression "a*(b $\div c) * d$ ".
(08 Marks)
c. How multiple stacks implemented using one dimensional array? Explain with a suitable example.
(04 Marks)
4 a. Write the following functions for singly linked list :
i) Reverse the list
ii) Concatenate two lists.
(08 Marks)
b. Write the node structure for linked representation of polynomial. Explain the algorithm to add two polynomials represented using linked lists.
(08 Marks)
c. What is the advantage of doubly linked list over singly linked list? Illustrate with an example.
(04 Marks)

PART - B

5 a. Illustrate with a suitable example define :
i) Binary tree
ii) Degree of a binary tree
iii) Level of a binary tree
iv) Sibling.
(08 Marks)
b. For any nonempty binary tree, T, if n_{0} is the number of leaf nodes and n_{2} the number of nodes of degree 2 , then prove that $n_{0}=n_{2}+1$.
(04 Marks)
c. What is the advantage of threaded binary tree over binary tree? Explain threaded binary trce construction with a suitable example.
(08 Marks)

6 a. What is binary search tree? Write a recursive search routine for a binary search tree.
b. Explain selection trees, with suitable example.
(08 Marks)
c. What is a forest? With a suitable example illustrate how you transform a forest into a binary tree.
(06 Marks)
7 a. Define priority queue. List the single ended and double-ended priority queue operations.
b. Detine the following :
i) Leftist trees
ii) Min leftist trees and
iii) Weighted leftist trees.
(06 Marks)
c. What is binomial heap? Explain the following associated with binomial heap :
i) Insertion into a binomial heap
ii) Melding two binomial heaps and
iii) Deletion of min element.
(08 Marks)
8 Write short notes on:
a. Optimal binary scarch trees
b. AVL trees
c. Red - black trees
d. Splay trees.
(20 Marks)

Third Semester B.E. Degree Examination, June/July 2014 Object Oriented Programming with C++

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Compare object oriented programming with procedure oriented programming. (06 Marks)
b. Define function overloading. Write a $\mathrm{C}++$ program to define overloaded functions to find volume of cube, volume of cylinder and volume of cuboid.
(08 Marks)
c. With an example, explain when the set of overloaded functions can be combined into a single function definition by using default arguments.
(06 Marks)
2 a. Define the terms class and object. Write a $\mathrm{C}++$ program to define a class called distance with feet and inches as data members and get(), put() and add() as members to read. display and add two distance objects.
(10 Marks)
b. With an example, illustrate the characteristics of a constructor.
(05 Marks)
c. Write a short note on destructors.
(05 Marks)
3 a. With an example, explain the use of friend functions in $\mathrm{C}++$.
(06 Marks)
b. With an example, explain when to use member function and when to use friend function as
an operator function for overloading binary operators.
(08 Marks)
c. Write a $\mathrm{C}++$ program to arrange set of integer and floating point values in ascending order by using a function template.
(06 Marks)
4 a. With the help of syntax for creating the derived class, explain the visibility of the base class members, for the access specifiers private, protected and public.
(08 Marks)
b. With an example, explain multiple inheritance.
(06 Marks)
c. Fxplain the necessity of protected data members, with an cxample.
(06 Marks)

PART - B

5 a. Explain the use of virtual base classes in diamond shaped inheritance.
(08 Marks)
b. Explain the order of invocation of constructors and destructors in multilevel inheritance.
(08 Marks)
c. Write a short note on use of scope resolution operator in inheritance.
(04 Marks)
6 a. Define virtual function. Explain the need of a virtual function with an example. (06 Marks)
b. Write a $\mathrm{C}++$ program to illustrate the virtual functions in hierarchical inheritance. (08 Marks)
c. Define abstract class. Write a $\mathrm{C}++$ progran to illustrate abstract class.
(06 Marks)
7 a. Explain the following output manipulators:
i) seto()
ii) setprecision()
iii) setfill()
(06 Marks)
b. Briefly explain the facilities available in fstream class for file operations.
(06 Marks)
c. Write a C++ program to read a binary file, which contains the details of 5 students such as Name, rollno, age and grade obtained by the student. Display the above read details on the screen.
(08 Marks)
8 a. What is exception handling? Write a C++ program to demonstrate the "try", "throw", and "catch" keywords for implementing exception handling.
b. List and explain five member functions from vectors and lists classes in STL.

Third Semester B.E. Degree Examination, June/July 2014 Advanced Mathematics - I

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions
1 a. Find the modulus and amplitude of

$$
\frac{5+3 i}{4-2 i}
$$

(06 Marks)
b. Prove that $(1+i)^{n}+(1-i)^{n}=2^{\frac{n}{2}+1} \cos \frac{n \pi}{4}$
(07 Marks)
c. Prove that $\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{4}=\cos 80+i \sin 8 \theta$
(07 Marks)

2 a. Obtain the $n^{\text {th }}$ derivative of $\mathrm{e}^{\mathrm{ax}} \sin (\mathrm{bx}+\mathrm{c})$
(06 Marks)
b. Find the $n^{\text {th }}$ derivative of $\frac{x+3}{(x-1)(x+2)}$
(07 Marks)
c. If $y=a \cos (\log x)+b \sin (\log x)$, then prove that $x^{2} y_{n 12}+(2 n+1) x y_{n+1}+\left(n^{2}+1\right) y_{n}=0$
(07 Marks)
3 a. Find the angle of intersection of the curves $r=\sin \theta+\cos \theta, r=2 \sin \theta$.
(06 Marks)
b. Find the pedal equation of the curve $r^{n}=a^{n} \cos n \theta$.
(07 Marks)
c. Using Maclaurin's series expand $\log (1+\sin x)$ upto the term containing x^{4}.
(07 Marks)

4 a. If $\%=\frac{x^{2}+y^{2}}{x+y}$, then show that $\left(\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)^{2}=4\left(1-\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)$
(07 Marks)
b. If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$.
(06 Marks)
c. If $u=x+3 y^{2}-z^{3}, v=4 x^{2} y z, w=2 z^{2}-x y$, cvaluate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1,-1,0)$.
(07 Marks)

5 a. Obtain the reduction formula for

$$
1_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x
$$

(06 Marks)
b. Evaluate $\int_{0}^{\pi} \int_{2 \sin \theta}^{4 \sin \theta} r^{3} d r d \theta$
(07 Marks)
c. Evaluate $\int_{-1}^{1} \int_{0}^{\prime} \int_{x-1}^{x, 2}(x+y+z) d x d y d z$
(07 Marks)

6 a. With usual notations, prove that

$$
\beta(m, n)=\frac{I^{\prime}(m) I^{\prime}(n)}{I^{\prime}(m+n)}
$$

(06 Marks)
b. Show that $\int_{i}^{\pi} \sqrt{\sin \theta} d \theta \times \int_{0}^{\pi} \frac{d 0}{\sqrt{\sin 0}}=\pi$
(07 Marks)
c. Prove that $\beta(\mathrm{m}, 1 / 2)=2^{2 \mathrm{nn}}{ }^{\mathrm{t}} \beta(\mathrm{m}, \mathrm{m})$
(07 Marks)

7 a. Solve $\frac{d y}{d x}=(4 x+y+1)^{2}$, if $y(0)=1$.
(06 Marks)
b. Solve $(x+1) \frac{d y}{d x}-y=c^{3 x}(x+1)^{2}$
(07 Marks)
c. Solve $\left\{y\left(1+\frac{1}{x}\right)+\cos y\right\} d x+(x+\log x-x \sin y) d y=0$
(07 Marks)

8 a. Solve: $\left(D^{3}+D^{2}+4 D+4\right) y=0$
(06 Marks)
b. Solve: $\left(D^{2}-5 D+1\right) y=1+x^{2}$ (07 Marks)
c. Solve: $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=e^{2 x} \sin x$

